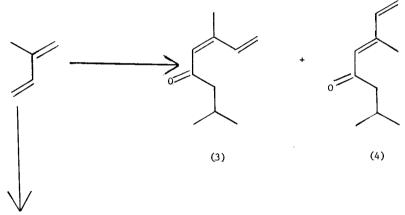
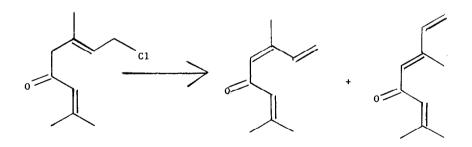
SIMPLE SYNTHESES OF THE ATLANTONES, OCIMENONES, TAGETONES AND FILIFOLONE FROM ISOPRENE

David R. Adams, Surendra P. Bhatnagar,

Richard C. Cookson, * and Robert M. Tuddenham Chemistry Department, The University, Southampton SO9 5NH

(Received in WK 24 April 1974; accepted for publication 31 July 1974)

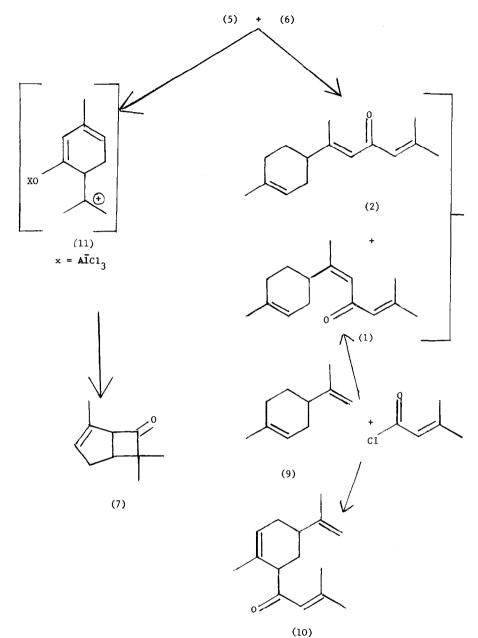

The formation of terpenes by step-wise addition of isoprene units has long been an objective of organic synthesis. We describe here such synthesis of a range of terpenes by acylation of olefins and by Diels-Alder reactions, both catalysed by Lewis acids.


Addition of isoprene (0.13 mol.) in methylene chloride to senecioyl chloride (0.1 mol.) in methylene chloride containing stannic chloride (0.09 mol.) at -78° gave the crude chloroketone (8),[†] which was treated with lithium fluoride and lithium carbonate in dimethylformamide at 120° to give ocimenone² in 90% isolated yield, as a mixture of *cis* and *trans*-isomers³ (1:9) (5) and (6)^{*}. *cis*- and *trans*-Atlantone⁵ (1:9) (1) and (2), identical, but for optical rotation, with samples isolated from the essential oil of *Cedrus atlantica* were obtained from ocimenone (0.004 mol.) by addition of isoprene (0.016 mol.) in methylene chloride containing aluminium chloride (0.003 mol.) at 20° , in an isolated yield of 85%.

Treatment of ocimenone (0.004 mol.) in methylene chloride with aluminium chloride (0.003 mol.) at 40° resulted in the formation of filifolone⁶ (7) (80% conversion after 3h.), probably through the intermediate (11) suggested in the rearrangement of chrysanthenone⁷ to filifolone.

The *cis* and *trans*-atlantones (1:9 (1) and (2) were also synthesised by direct acylation and subsequent dehydrochlorination of limonene (9) (available by dimerisation of isoprene): senecioyl chloride (0.05 mol.) in methylene chloride containing stannic chloride (0.045 mol.) cooled to -78° was added to limonene (0.05 mol.) in a mixture of methylene chloride and Freon 12 at -120° . The crude chloro-ketones were then treated with lithium fluoride and lithium carbonate in dimethylformamide at 120° to afford a mixture of isomers of which *cis* and *trans*-atlantone (1) and (2) were *ca*. 60% (glc) of the reaction mixture. The other major product (20%, glc) was the nonconjugated isomer (10).

- ⁺ Although the chloro-ketones could be isolated and identified (m.s., n.m.r., i.r.), in a typical run the dehydrochlorination was carried out using the crude material.
- * A similar sequence but using isovaleryl chloride as the acid chloride, furnished a mixture of *cis* and *trans*-tagetone (40:60) (3) and (4).



(8)

(6)

References

- 1. A.F. Thomas, "The Total Synthesis of Natural Products," Vol. 2., Wiley, 1973
- 2. D.J.J. de Villiers, C.F. Garbers, and R.N. Laurie, Phytochemistry, 1971, 10, 1359
- 3. cf. R.C. Cookson and R.M. Tuddenham, J. Chem. Soc. Chem. Comm., 1973, 742

-

- T.G.H. Jones and F.B. Smith, <u>J. Chem. Soc</u>., 1925, 2530; 1926, 2767;
 E.E. Boehm, V. Thaller and M.C. Whiting, <u>J. Chem. Soc</u>., 1963, 2535;
 P. Teisseire and B. Corbieu, <u>Recherches</u>, 1969, <u>17</u>, 5
- A. St. Pfau and P. Plattner, <u>Helv. Chim. Acta</u>, 1934, 17, 129;
 G.S. Krishna Rao, S. Dev, and P.C. Guha, <u>J. Indian Chem. Soc</u>., 1952, <u>29</u>, 721
 M.I. Golyaev, A.D. Dimbitskii, T.E. Serkebaeva and G.I. Krotova, <u>Izv. Akad. Nauk Kaz</u>. <u>SSR Ser. Khim</u>., 1969, <u>19</u>, 48; <u>Chem. Abs</u>., 1969, <u>71</u>, 64019;
 R.J. Crawford, W.F. Erman, C.D. Broaddus, <u>J. Amer. Chem. Soc</u>., 1972, <u>94</u>, 4298;
 J. Alexander and G.S. Krishna Rao, <u>Indian J. Chem</u>., 1973, <u>11</u>, 859
 R.B. Bates, M.J. Onore, S.K. Pakinkar, C. Steelink, and E.P. Blanchard,
- J.C.S. Chem. Comm., 1967, 1037; J.J. Beereboom, J. Amer. Chem. Soc., 1963, 85, 3525; J. Org. Chem., 1965, 30, 4230
- 7. W.F. Erman, R.S. Treptow, P. Bakuzis and E. Wenkert, J. Amer. Chem. Soc., 1971, 93, 657

Acknowledgement

We thank Union Carbide (U.K) Limited for a Research Fellowship.